Experimental Analysis of Deviations of Real Gases from Ideal Gases at Constant Temperature
Keywords:
deviation, ideal gas, real gas, Van der WaalsAbstract
This research aims to examine the deviations in experimental results of real gases from the ideal gas model at a constant temperature. The research method involves using specially designed and developed experimental apparatus to measure the pressure and volume of gases at various pressure variations up to 600 KPa. The pressure and volume data of gases are analyzed by comparing the Van der Waals Gas model with the ideal gas model. The analysis results indicate that the Van der Waals Gas model is significantly more accurate in modeling the behavior of real gases compared to the ideal gas model. The Van der Waals Gas model has a lower Root Mean Square Error (RMSE) value (1509.8 Pa) and a coefficient of determination (R square) value approaching 1 (0.99), while the ideal gas model exhibits a high RMSE (352121.0 Pa) and a low R square (0.082). Deviations from ideal gas behavior occur at high pressures (above 150,000 Pa) and low pressures (below 90,000 Pa), while within the pressure range between these two points, the ideal gas model still provides reasonably good results. The Van der Waals gas model is significantly more accurate than the ideal gas model in modeling the behavior of real gases at a constant temperature.
References
Abu-Faraj, M. A., Al-Hyari, A., & Alqadi, Z. (2022). Experimental analysis of methods used to solve linear regression models. Computers, Materials & Continua, 72(3), 5699-5712. https://doi.org/10.32604/cmc.2022.027364
Avramenko, A. A., Shevchuk, I. V., & Kovetskaya, M. M. (2021). An analytical investigation of natural convection of a van der waals gas over a vertical plate. Fluids, 6(3),1-13. https://doi.org/10.3390/fluids6030121
Bråten, V., Bedeaux, D., Wilhelmsen, Ø., & Schnell, S. K. (2021). Small size effects in open and closed systems: What can we learn from ideal gases about systems with interacting particles? The Journal of Chemical Physics, 155(24), 1-15. https://doi.org/10.1063/5.0076684
Burger, F. A., Corkery, R. W., Buhmann, S. Y., & Fiedler, J. (2020). Comparison of theory and experiments on van der waals forces in media—a survey. The Journal of Physical Chemistry C, 124(44), 24179-24186. https://doi.org/10.1021/acs.jpcc.0c06748
Castellanos-Gomez, A., Duan, X., Fei, Z., Gutierrez, H. R., Huang, Y., Huang, X., ... & Sutter, P. (2022). Van der Waals heterostructures. Nature Reviews Methods Primers, 2(1), 1-38. https://doi.org/10. 1038/s43586-022-00139-1
Hermann, J., DiStasio Jr, R. A., & Tkatchenko, A. (2017). First-principles models for van der Waals interactions in molecules and materials: Concepts, theory, and applications. Chemical Reviews, 117(6), 4714-4758. https://doi.org/10.1021/acs. chemrev.6b00446
Karunasingha, D. S. K. (2022). Root mean square error or mean absolute error? Use their ratio as well. Information Sciences, 585, 609-629. https://doi.org/ 10.1016/ j.ins.2021.11.036
Kasuya, E. (2019). On the use of r and r squared in correlation and regression (Vol. 34, No. 1, pp. 235-236). Hoboken, USA: John Wiley & Sons, Inc. https://doi.org/ 10.1111/1440-1703.1011
Lewis, G. N., Randall, M., Pitzer, K. S., & Brewer, L. (2020). Thermodynamics. Courier Dover Publications.
Mansour, A., Lagrandeur, J., & Poncet, S. (2022). Analysis of transcritical CO2 vortex tube performance using a real gas thermodynamic model. International Journal of Thermal Sciences, 177, 107555. https://doi.org/10.1016/j.ijthermalsci.2022.107555
Muratore, C., Voevodin, A. A., & Glavin, N. R. (2019). Physical vapor deposition of 2D Van der Waals materials: a review. Thin Solid Films, 688, 137500. https://doi.org/ 10.1016/j.tsf.2019.137500
Putri, K. D., Warsito, A., & Louk, A. C. (2023). Kajian keadaan termodinamik gas argon model gas ideal, Van der Waals, Song Mason, dan Beattie Bridgeman berdasarkan komputasi Newton Raphson. Jurnal Fisika: Fisika Sains dan Aplikasinya, 8(2), 1-8.
Vestfálová, M., & Šafařík, P. (2018). Determination of the applicability limits of the ideal gas model for the calculation of moist air properties. In EPJ Web of Conferences (Vol. 180, p. 02115). EDP Sciences. https://doi.org/10.1051/epjconf/ 201818002115
Zhuang, G., Zhang, Z., Jaber, M., Gao, J., & Peng, S. (2017). Comparative study on the structures and properties of organo-montmorillonite and organo-palygorskite in oil-based drilling fluids. Journal of Industrial and Engineering Chemistry, 56, 248-257. https://doi.org/10.1016/j.jiec. 2017. 07.017
Zucker, R. D., & Biblarz, O. (2019). Fundamentals of gas dynamics. John Wiley & Sons.